Search results for "Surface plasmon resonance imaging"

showing 2 items of 2 documents

Odorant-binding protein-based optoelectronic tongue and nose for sensing volatile organic compounds

2019

International audience; We developed an array of odorant-binding protein mutants with various binding properties. The same design is suitable for the detection and identification of volatile organic compounds (VOCs) both in the liquid phase and in the gas phase by surface plasmon resonance imaging. The obtained optoelectronic tongue is highly selective at low concentrations of VOCs with a low detection limit, but a narrow linear range. In comparison, the optoelectronic nose gives a much higher signal to noise ratio, but the discrimination of VOCs from different chemical classes requires kinetic data to get rid of non-specific signals. This work shows that these optoelectronic tongue and nos…

electronic nosevolatile organic compoundMaterials scienceElectronic tongueodorant-binding proteins02 engineering and technologyelectronic tongue01 natural sciences[CHIM.ANAL]Chemical Sciences/Analytical chemistrySurface plasmon resonance imaging[CHIM]Chemical SciencesVolatile organic compoundComputingMilieux_MISCELLANEOUSchemistry.chemical_classificationDetection limitElectronic nosebiologybusiness.industry[CHIM.ORGA]Chemical Sciences/Organic chemistry010401 analytical chemistryBinding properties[CHIM.ORGA] Chemical Sciences/Organic chemistry021001 nanoscience & nanotechnology0104 chemical sciences[SDV.AEN] Life Sciences [q-bio]/Food and NutritionchemistryLinear rangeOdorant-binding proteinbiology.proteinOptoelectronicssurface plasmon resonance imaging0210 nano-technologybusiness[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition
researchProduct

Highly sensitive olfactory biosensors for the detection of volatile organic compounds by surface plasmon resonance imaging

2018

International audience; Nowadays, monitoring of volatile organic compounds (VOCs) is very important in various domains. In this work, we aimed to develop sensitive olfactory biosensors using odorant binding proteins (OBPs) as sensing materials. Three rat OBP3 derivatives with customized binding properties were designed and immobilized on the same chip for the detection of VOCs in solution by surface plasmon resonance imaging (SPRi). We demonstrated that the proteins kept their binding properties after the immobilization under optimized conditions. The obtained olfactory biosensors exhibited very low limits of detection in both concentration (200pM of beta-ionone) and in molecular weight of …

volatile organic compoundConformational change[SDV.BIO]Life Sciences [q-bio]/BiotechnologyOdorant bindingBiomedical EngineeringBiophysicsBiosensing Techniques02 engineering and technologyReceptors Odorant01 natural sciencesHexanal[SPI]Engineering Sciences [physics]chemistry.chemical_compoundElectrochemistryAnimalsVolatile organic compoundComputingMilieux_MISCELLANEOUSDetection limitchemistry.chemical_classificationVolatile Organic CompoundsChromatographyChemistry010401 analytical chemistryGeneral MedicineRepeatabilitySurface Plasmon Resonance021001 nanoscience & nanotechnologyRats0104 chemical sciencesSmellsurface plasmon resonance imagingofactory biosensor0210 nano-technologySelectivityBiosensorodorant binding proteinsBiotechnologyBiosensors and Bioelectronics
researchProduct